Locally Determined Functions of Finite Simplicial Complexes That Are Linear Combinations of the Numbers of Simplices in Each Dimension

نویسنده

  • ETHAN D. BLOCH
چکیده

The Euler characteristic, thought of as a function that assigns a numerical value to every finite simplicial complex, is locally determined in both a combinatorial sense and a geometric sense. In this note we show that not every function that assigns a numerical value to every finite simplicial complex via a linear combination of the numbers of simplices in each dimension is locally determined in either sense. In particular, the Charney-Davis quantity λ(L) is not locally determined in either sense if it is defined on a set of simplicial complexes that includes all flag spheres of a given odd dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functions of finite simplicial complexes that are not locally determined

The Euler characteristic, thought of as a function that assigns a numerical value to every finite simplicial complex, is locally determined in both a combinatorial sense and a geometric sense. In this note we show that not every function that assigns a numerical value to every finite simplicial complex via a linear combination of the numbers of simplices in each dimension is locally determined ...

متن کامل

Geometric and Solid Modeling

Simplicial Complexes and Geometric Realization Since we de ned simplices as convex combinations of points, it is conceivable that this de nition is too narrow. That is, when constructing a simplicial complex, can we obtain more complicated structures using simplices that are only homeomorphic to convex combinations? From a topological point of view, the answer is no, and is justi ed as follows....

متن کامل

On a special class of Stanley-Reisner ideals

For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where  $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...

متن کامل

The Angle Defect for Odd-Dimensional Simplicial Manifolds

In a 1967 paper, Banchoff stated that a certain type of polyhedral curvature, that applies to all finite polyhedra, was zero at all vertices of an odd-dimensional polyhedral manifold; one then obtains an elementary proof that odd-dimensional manifolds have zero Euler characteristic. In a previous paper, the author defined a different approach to curvature for arbitrary simplicial complexes, bas...

متن کامل

New methods for constructing shellable simplicial complexes

A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014